

CURRENT TRANSFORMER AC/DC TRMS - RS485 MODBUS

QI-50-V-485

IT PENDING

POWEL
polarity
ABSOR
PROTE
ACCUR
RESOL
TEMPE
WORK

POWER SUPPLY 12...30Vdc, Protection against polarity reversal and overtemperature.

ABSORPTION Max 20mA
PROTECTION INDEX IP20

ACCURACY 0,5% F.S.

RESOLUTION 12 bit

TEMPERATURE COEFFICIENT < 200 ppm/°C
WORKING TEMPERATURE -15...+65°C

STORAGE TEMPERATURE -40°C... +85°C

RESPONSE TIME 1000 ms on analog output, 30ms on serial output

TYPE OF MEASURE

TRMS (monopolar)

RANGE 50 Arms o 25 Arms dip-switch setting, bipolar (+/- 50A DC o +/-25A DC), RS485 customize setting

OUTPUT 0...10V and RS485

BAND WIDTH AT -3dB DC or 20...2000 Hz

ISOLATION 3 kV on bare wire

OVERLOAD 2000A pulse, 300A continuos

CREST FACTOR

HYSTERESIS

2 0,15% f.s.

HUMIDITY 10...90% not condensing

ALTITUDE Up to 2000 m s.l.m.

WEIGHT 72 g.

FILLING Epoxy Resins

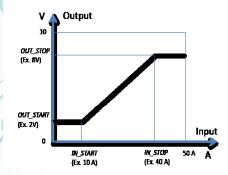
BOX MATERIAL PBT, grey

MOUNTING Screw predisposition for vertical/

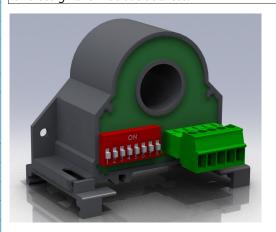
horizontal mounting, DIN rail clips (included) for vertical/horizontal mounting.

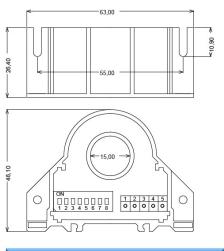
TERMINALS Removable terminals 3,5mm, 5 poles

DIP-SWITCH 8 poles


LED N°1 yellow, Power on fixed, data

communication blinking


2010-11;


DIMENSIONS 46,1x 63x 26,4 mm (terminal excluded)

QI-50-V-485 Input / Output (Esempio)

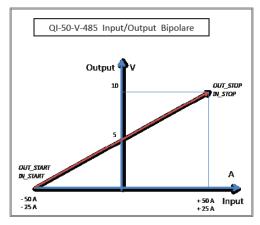
The QI-50-V-485 is a AC/DC current transformer, galvanically isolated from the measuring circuit. The device is in the function and appearance is very similar to a standard active TA, however, able to measure the DC component and AC TRMS. The transformer is equipped with RS485 Modbus serial output and an analog output 0-10V. Through the serial port can be configured freely span and zero and assign the Modbus address.

ISOLATION AND CONNECTIONS

It's possible to connect via serial RS485 to the QI-50-V-48 through a converter USB/232-485 for setting the parameters of zero and span and configuration of the Modbus addresses directly from your system of supervision, or using the free FACILE QI-50-V-485 software. You can download our software on www.qeed.it

QUALITY ELECTRONIC DESIGN

WWW.QEED.IT INFO@QEED.IT D.E.M. _{S.p.A.}


of electrica & electronic equipment (applicable throughout the EII and other countries we separate collection programs). This symbol, found on your product or on agriculte collection agriculted to the tender of the sold reduced the standard order to agriculted collection the recycling electrical should not be readed to subsidior the sex based order to suppress the subsidior of the subsidior with suppress the subsidior to suppress the suppress to suppress the suppress that suppress the suppress the suppress that suppress the suppress the suppress that suppress the suppress the suppress that suppress the suppress the suppress that su

QI-50-V-485

CADC TRMS - RS485 MODBUS

CURRENT TRANSFORMER AC/DC TRMS - RS485 MODBUS

QI-50-V-485

Modbus connections: A+ and B- as per Modbus

Modbus Register reference: with reference to the logical address, for ex. 40010, corresponds to physical address n°9 as per Modbus RTU

Dip Switch Settings: the setting is not enabled if the first fourth dip-switches are set to 0000, the rest of dip-switch are disabled. All settings

Modbus functions supported: 3 (Read multiple

Via the serial link RS485-USB you can connect to the QI-50-V-485 via the interface program FACILE QI-50-V-485. Using this software, free download from www.qeed.it, allows you to configure the processor by setting the START and STOP input and output (see diagram), you can set the Modbus address of the PC to which the query transformer and decide whether to make monopolar (only positive or negative values) or bipolar (see diagram). If you are using bipolar function on AC current, the value read will be 0 A (5 V) because you are reading the average value.

By means of dip-switch can configure the QI-50-V-485 to set the scale to 25 or 50A, the function monopolar (TRMS) or bipolar (mean value), the Modbus address (see register map below) up to a maximum of 15 addresses.

MOUNTING: The current transformer QI can be mounted in any position (see photo below), horizontal or vertical mounting, horizontal or vertical through the two hooks for DIN rail included in the box.

CAUTION: Magnetic fields of high intensity can vary the values measured by the transformer. Avoid installation near permanent magnets, electromagnets or iron masses that induce strong changes in the magnetic field. If any irregularity recommend reorient or move the transformer in the area most appropriate.

Modbus register table:

coming from EEPROM.

registers, max 4), 6 (Write single).

RTU standards;

standard:

REMARKS:

	Register Name	egister Name Comment		R/W	DEFAULT	Range	Modbus	
					Value		Address	
l	machine_ID	ID Machine	Unsigned 16 bits	R	4		40001	
[FW_Version	Firmware Release	Unsigned 16 bits	R			40002	
[addr	Modbus Address	Unsigned 16 bits	R/W	1	1250	40003	
- [Delay	Answer Delay	Unsigned 16 bits	R/W	1	11000	40004	
Ī	Baudrate	Baudrate	Unsigned 16 bits	R/W	1	07	40005	
		0=1200 / 1= 2400						
		2= 4800 / 3= 9600						
		4= 19200 / 5= 38400						
		6= 57600 / 7= 115200						
	parity	Type of parity	Unsigned 16 bits	R/W	0	02	40006	
		0= 8,N,1						
		1= 8, O, 1(ODD)						
ļ		2= 8, E, 1 (EVEN)						
	In_start	Start Input (A)	Floating 32 bits	R/W	0		40007 (LO)	
							40008 (HI)	
	In_stop	Stop Input (A)	Floating 32 bits	R/W	50		40009 (LO)	
-							40010 (HI)	
-	Out_start_V	Start Output (mV)	Unsigned 16 bits	R/W	0	010000	40011	
-	Out_stop_V	Stop Output (mV)	Unsigned 16 bits	R/W	10000	010000	40012	
	filt1	n° of samples for mobile	Unsigned 16 bits	R/W	1	132	40013	
-		average (1= 100ms)						
	filt	Second level filter for	Unsigned 16 bits	R/W	4096	1000	40014	
		ripple problems on AC				20000		
ŀ		measurement	** . 1	******				
ŀ	Cutoff	Cutoff Value (mA)	Unsigned 16 bits	R/W	250		40029	
	RMS_A	RMS Current Value (A)	Floating 32 bits	R			40037 (LO)	
ł	Command	0. C1C0 C Fl. 1. C	TT 1 1 < 1 % .	R/W			40038 (HI) 40040	
	Command	0xC1C0: Save Flash Settings 0xC1A0: Reset (software)	Unsigned 16 bits	R/W			40040	
ŀ	status	Status Register	Unsigned 16 bits	R			40048	
	status	bit 0 =1 : Error flash settings	Unsigned 16 bits	K			40048	
П		bit 1=1:Error flash calibration						
		bit 2=1 : Over Range						
		bit 3=1 : Under Range						
ŀ	RMS 100	RMS Value of Current	Signed 16 bits	R			40050	
П	1010_100	(A x 100)	oighed to bits	_ ``			10050	
ı	RMS sw	RMS Current Value (A)	Floating 32 bits	R			40051 (HI)	
		swapped					40052 (LO)	
ı	Ah	Ah counting (resettable)	Floating 32 bits	R/W			40053 (LO)	
		(,					40054 (HI)	
Ì	A MAX	Max current value/100	Signed 16 bits	R/W			40055	
	_	(resettable)	Ü					
İ	A_min	min current value/100	Signed 16bits	R/W			40056	
		(resettable)	Ü					
Ì	Data High	Calibration Data (yy, mm)	Unsigned 16 bits	R			40057	
Ì	Data Medium	Calibration Data (day, hour)	Unsigned 16 bits	R			40058	
Ì	Data Low	Calibration Data (min, sec)	Unsigned 16 bits	R			40059	
					-		-	

Dip-switch table:

DESCRIPTION	1	2	3	4	5	6	7	8
All settings from EEPROM	0	0	0	0				
ADD= 1	0	0	0	1				
ADD= 2	0	0	1	0		7		
ADD= 15	1	1	I	1				
2400 BAUDRATE			1		0	0		
9600 BAUDRATE					0	1		
38400 BAUDRATE					1	0		
57800 BAUDRATE					1	-1		
MONOPOLAR (TRMS)							0	
BIPOLAR (MEAN VALUE)				_			1	
50 A					0-			0
25 A								1

Dip-Switch Settings

Example: if you want to set the measure range from 0...50 A to 0... 25A, please, put ON the dip-switch n°8 and put ON also one of the first four dip-switch (if you don't do that it continue to take the EEPROM setting).

If you want to modify from Monopolar (default) to Bipolar function by dip-switch, please, put ON the dip n°7 and put ON also one of the first dip-switch (if you don't do that it continue to take the EEPROM setting).

Any changes made by dip-switch required to switch off the power supply. It's a safety condition in order to prevent any manumission on the device.

This document is the property of DEM spa. Duplication or reproduction is prohibited The contents of this document correspond to the products and technologies described. This information may be amended or supplemented by technical and commercial requirements